
django-superform Documentation
Release 0.4.0.dev1

Gregor Müllegger

February 15, 2016

Contents

1 Quickstart with django-superform 3

2 Available Forms 5
2.1 SuperForm . 5
2.2 SuperFormMixin . 5
2.3 SuperModelForm . 5
2.4 SuperModelFormMixin . 5

3 Fields 7
3.1 CompositeField . 7
3.2 FormField . 7
3.3 ModelFormField . 8
3.4 ForeignKeyFormField . 10
3.5 FormSetField . 10
3.6 ModelFormSetField . 10
3.7 InlineFormSetField . 10

4 On saving SuperModelForm 13

5 Changelog 15
5.1 0.3.1 . 15
5.2 0.3.0 . 15
5.3 0.2.0 . 15
5.4 0.1.0 . 15

i

ii

django-superform Documentation, Release 0.4.0.dev1

A SuperForm lets you nest other forms and formsets inside a form. That way handling multiple forms on one page
gets super easy.

Contents:

Contents 1

django-superform Documentation, Release 0.4.0.dev1

2 Contents

CHAPTER 1

Quickstart with django-superform

TODO.

3

django-superform Documentation, Release 0.4.0.dev1

4 Chapter 1. Quickstart with django-superform

CHAPTER 2

Available Forms

2.1 SuperForm

class django_superform.forms.SuperForm(*args, **kwargs)

2.2 SuperFormMixin

class django_superform.forms.SuperFormMixin(*args, **kwargs)
The base class for all super forms. It behaves just like a normal django form but will also take composite fields,
like FormField and FormSetField.

Cleaning, validation, etc. should work totally transparent.

2.3 SuperModelForm

class django_superform.forms.SuperModelForm(*args, **kwargs)

2.4 SuperModelFormMixin

class django_superform.forms.SuperModelFormMixin(*args, **kwargs)

5

django-superform Documentation, Release 0.4.0.dev1

6 Chapter 2. Available Forms

CHAPTER 3

Fields

This is the class hierachy of all the available composite fields to be used in a SuperForm:

+ CompositeField
|
+-+ FormField
| |
| +-+ ModelFormField
| |
| +-- ForeignKeyFormField
|
+-+ FormSetField

|
+-+ ModelFormSetField
|
+-+ InlineFormSetField

3.1 CompositeField

class django_superform.fields.CompositeField(*args, **kwargs)
Implements the base structure that is relevant for all composite fields. This field cannot be used directly, use a
subclass of it.

get_initial(form, name)
Get the initial data that got passed into the superform for this composite field. It should return None if no
initial values where given.

get_kwargs(form, name)
Return the keyword arguments that are used to instantiate the formset.

get_prefix(form, name)
Return the prefix that is used for the formset.

3.2 FormField

class django_superform.fields.FormField(form_class, kwargs=None, **field_kwargs)
A field that can be used to nest a form inside another form:

7

django-superform Documentation, Release 0.4.0.dev1

from django import forms
from django_superform import SuperForm

class AddressForm(forms.Form):
street = forms.CharField()
city = forms.CharField()

class RegistrationForm(SuperForm):
first_name = forms.CharField()
last_name = forms.CharField()
address = FormField(AddressForm)

You can then display the fields in the template with (given that registration_form is an instance of
RegistrationForm):

{{ registration_form.address.street }}
{{ registration_form.address.street.errors }}
{{ registration_form.address.city }}
{{ registration_form.address.city.errors }}

The fields will all have a prefix in their name so that the naming does not clash with other fields on the page.
The name attribute of the input tag for the street field in this example will be: form-address-street.
The name will change if you set a prefix on the superform:

form = RegistrationForm(prefix='registration')

Then the field name will be registration-form-address-street.

You can pass the kwargs argument to the __init__ method in order to give keyword arguments that you
want to pass through to the form when it is instaniated. So you could use this to pass in initial values:

class RegistrationForm(SuperForm):
address = FormField(AddressForm, kwargs={

'initial': {'street': 'Stairway to Heaven 1'}
})

But you can also use nested initial values which you pass into the superform:

RegistrationForm(initial={
'address': {'street': 'Highway to Hell 666'}

})

The first method (using kwargs) will take precedence.

get_form(form, name)
Get an instance of the form.

get_form_class(form, name)
Return the form class that will be used for instantiation in get_form. You can override this method in
subclasses to change the behaviour of the given form class.

3.3 ModelFormField

class django_superform.fields.ModelFormField(form_class, kwargs=None, **field_kwargs)
This class is the to FormField what Django’s ModelForm is to Form. It has the same behaviour as
FormField but will also save the nested form if the super form is saved. Here is an example:

8 Chapter 3. Fields

django-superform Documentation, Release 0.4.0.dev1

from django_superform import ModelFormField

class EmailForm(forms.ModelForm):
class Meta:

model = EmailAddress
fields = ('email',)

class UserForm(SuperModelForm):
email = ModelFormField(EmailForm)

class Meta:
model = User
fields = ('username',)

user_form = UserForm(
{'username': 'john', 'form-email-email': 'john@example.com'})

if user_form.is_valid():
user_form.save()

This will save the user_form and create a new instance of User model and it will also save the EmailForm
and therefore create an instance of EmailAddress!

However you usually want to use one of the exsting subclasses, like ForeignKeyFormField or extend from
ModelFormField class and override the get_instance() method.

Note: Usually the ModelFormField is used inside a SuperModelForm. You actually can use it within
a SuperForm, but since this form type does not have a save() method, you will need to take care of saving
the nested model form yourself.

get_instance(form, name)
Provide an instance that shall be used when instantiating the modelform. The form argument is the super-
form instance that this ModelFormField is used in. name is the name of this field on the super-form.

This returns None by default. So you usually want to override this method in a subclass.

get_kwargs(form, name)
Return the keyword arguments that are used to instantiate the formset.

The instance kwarg will be set to the value returned by get_instance(). The
empty_permitted kwarg will be set to the inverse of the required argument passed into the con-
structor of this field.

save(form, name, composite_form, commit)
This method is called by django_superform.forms.SuperModelForm.save() in order to
save the modelform that this field takes care of and calls on the nested form’s save() method. But
only if shall_save() returns True.

shall_save(form, name, composite_form)
Return True if the given composite_form (the nested form of this field) shall be saved. Return False
if the form shall not be saved together with the super-form.

By default it will return False if the form was not changed and the empty_permitted argument for
the form was set to True. That way you can allow empty forms.

3.3. ModelFormField 9

django-superform Documentation, Release 0.4.0.dev1

3.4 ForeignKeyFormField

class django_superform.fields.ForeignKeyFormField(form_class, kwargs=None,
field_name=None, blank=None,
**field_kwargs)

3.5 FormSetField

class django_superform.fields.FormSetField(formset_class, kwargs=None, **field_kwargs)
First argument is a formset class that is instantiated by this FormSetField.

You can pass the kwargs argument to specify kwargs values that are used when the formset_class is
instantiated.

3.6 ModelFormSetField

class django_superform.fields.ModelFormSetField(formset_class, kwargs=None,
**field_kwargs)

3.7 InlineFormSetField

class django_superform.fields.InlineFormSetField(parent_model=None, model=None,
formset_class=None, kwargs=None,
**factory_kwargs)

The InlineFormSetField helps when you want to use a inline formset.

You can pass in either the keyword argument formset_class which is a ready to use formset that inherits
from BaseInlineFormSet or was created by the inlineformset_factory.

The other option is to provide the arguments that you would usually pass into the
inlineformset_factory. The required arguments for that are:

model The model class which should be represented by the forms in the formset.

parent_model The parent model is the one that is referenced by the model in a foreignkey.

form (optional) The model form that is used as a baseclass for the forms in the inline formset.

You can use the kwargs keyword argument to pass extra arguments for the formset that are passed through
when the formset is instantiated.

All other not mentioned keyword arguments, like extra, max_num etc. will be passed directly to the
inlineformset_factory.

Example:

class Gallery(models.Model): name = models.CharField(max_length=50)

class Image(models.Model): gallery = models.ForeignKey(Gallery) image = mod-
els.ImageField(...)

class GalleryForm(ModelFormWithFormSets):

class Meta: model = Gallery fields = (‘name’,)

images = InlineFormSetField(parent_model=Gallery, model=Image, extra=1)

10 Chapter 3. Fields

django-superform Documentation, Release 0.4.0.dev1

TODO: This document is quite raw. Needs improvement.

Form class needs to subclass from SuperForm or SuperModelForm.

During instantiation:

• composite fields get initialized

• The fields get_form and get_formsets methods are called which instantiate the nested form/formset.
They get the same data/files that are passed into the super form. Initial values are passed through. EXAMPLE.

• Those get attached into form.forms and form.formsets.

In template you can get a bound field (like with django’s normal form fields) with {{ form.composite_field_name }}.
Or you can get the real form instance with {{ form.forms.composite_field_name }}, or the formset: {{
form.formsets.composite_field_name }}.

Then when it gets to validation, the super form’s full_clean() and is_valid()methods will clean and validate
the nested forms/formsets as well. So is_valid() will return False when the super form’s fields are valid but any
of the nested forms/formsets is not.

Errors will be attached to form.errors. For forms it will be a error dict, for formsets it will be a list of the errors
of the formset’s forms.

3.7. InlineFormSetField 11

django-superform Documentation, Release 0.4.0.dev1

12 Chapter 3. Fields

CHAPTER 4

On saving SuperModelForm

The super form’s save() method will first save the model that it takes care of. Then the nested forms and then
the nested formsets. It will only return the saved model from the super form, but none of the objects from nested
forms/formsets. This is to keep the API to the normal model forms the same.

The commit argument is respected and passed down. So nothing is saved to the DB if you don’t want it to. In that
case, django forms will get a dynamically created save_m2m method that can be called later on to then save all the
related stuff. The super form hooks in there to also save the nested forms and formsets then (TODO: check, really?).
And ofcourse it calls their save_m2m methods :)

13

django-superform Documentation, Release 0.4.0.dev1

14 Chapter 4. On saving SuperModelForm

CHAPTER 5

Changelog

5.1 0.3.1

• SuperForm.composite_fields dict is not longer shared between form instances. Every new form in-
stances get’s a deep copy. So changes to it won’t leak into other instances of the same form class.

5.2 0.3.0

• #11: Fix CompositeBoundField to allow direct access to nested form fields via
form[’nested_form’][’field’].

• Support for Django’s Media handling in nested forms. See #3 and #5.

• Do not populate errorlist representations without any errors of nested formsets into the errors of the super form.
See #5 for details.

5.3 0.2.0

• Django 1.8 support.

• Initial values given to the __init__ method of the super-form will get passed through to the nested forms.

• The empty_permitted argument for modelforms used in a ModelFormField is set depending on the
required attribute given to the field.

5.4 0.1.0

• Initial release with proof of concept.

genindex | modindex | search

15

https://github.com/gregmuellegger/django-superform/issues/11
https://github.com/gregmuellegger/django-superform/issues/3
https://github.com/gregmuellegger/django-superform/pull/5
https://github.com/gregmuellegger/django-superform/pull/5

django-superform Documentation, Release 0.4.0.dev1

16 Chapter 5. Changelog

Index

C
CompositeField (class in django_superform.fields), 7

F
ForeignKeyFormField (class in django_superform.fields),

10
FormField (class in django_superform.fields), 7
FormSetField (class in django_superform.fields), 10

G
get_form() (django_superform.fields.FormField method),

8
get_form_class() (django_superform.fields.FormField

method), 8
get_initial() (django_superform.fields.CompositeField

method), 7
get_instance() (django_superform.fields.ModelFormField

method), 9
get_kwargs() (django_superform.fields.CompositeField

method), 7
get_kwargs() (django_superform.fields.ModelFormField

method), 9
get_prefix() (django_superform.fields.CompositeField

method), 7

I
InlineFormSetField (class in django_superform.fields), 10

M
ModelFormField (class in django_superform.fields), 8
ModelFormSetField (class in django_superform.fields),

10

S
save() (django_superform.fields.ModelFormField

method), 9
shall_save() (django_superform.fields.ModelFormField

method), 9
SuperForm (class in django_superform.forms), 5
SuperFormMixin (class in django_superform.forms), 5

SuperModelForm (class in django_superform.forms), 5
SuperModelFormMixin (class in

django_superform.forms), 5

17

	Quickstart with django-superform
	Available Forms
	SuperForm
	SuperFormMixin
	SuperModelForm
	SuperModelFormMixin

	Fields
	CompositeField
	FormField
	ModelFormField
	ForeignKeyFormField
	FormSetField
	ModelFormSetField
	InlineFormSetField

	On saving SuperModelForm
	Changelog
	0.3.1
	0.3.0
	0.2.0
	0.1.0

